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Setting n = 2, we obtain c31 = 1, since (6) = r(-4, 6) vanishes, as do all the
terms on the right save (312) and (313), which are -r(2) and r(2), respectively.
Setting n = 3, we obtain, similarly, c41 = 1.
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The electrical network problem was first treated comprehensively by Kirchhoff
in 1847. A complete proof for the existence of a solution was given by Hermann
Weyl2 in 1923 for the case of a purely resistive network when sources of electro-
motive force are placed in series with the branches. This proof was elaborated
by Eckmann3 in 1945. A condition for the existence of a solution given by Synge,4
attempting to cover a more general case, was unfortunately incorrect, as simple
counterexamples show. In this paper we show the existence and uniqueness of a
solution to the network problem under a condition which amounts to assuming that
the dissipative power is positive definite. Since this condition is satisfied by any
physically realizable network, it may be said that this result covers the general
physical case (steady state). Actually, we state the electrical network problem in
a purely algebraic-topological way. This is of interest since "electrical" networks
are used to solve certain ordinary and partial differential equations. The results
of this paper are essential to the proof of the validity of Kron's method of tearing,5
established in a second paper. Our first task is to describe a mathematical model
for the quantities and relations which exist in an electrical network.

Let K be an electrical network: We shall consider K as an oriented one-dimen-
sional complex. A set of currents flowing through the branches of K may be con-
sidered as the assigning of a complex number to each branch ("coil," in Kron's
terminology). Hence such a set of currents will be treated as a vector or oriented
i-chain. The space of such sets of branch currents thus coincides with the group
C'(K) of oriented 1-chains over the coefficient field of complex numbers. A mesh
current, the current flowing around an oriented closed loop, corresponds to a 1-
cycle, but, as we shall see, it is more appropriate to identify it with an element of
the first homology group H'(K) of K. In fact, the space of such loop currents
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(they are also called "mesh currents") is isomorphic with H'(K). With these
identifications, the transformation i Ci' used by Kron7 is the natural homomor-
phism8 of H1(K) into C'(K). Here i', i are column vectors representing elements
of H'(K), C'(K) with respect to bases chosen for these spaces. We recall, also,
that C'(K) may be regarded as the relative homology group of K modulo its zero
skeleton. Physically this transformation may be considered as an expression of
Kirchhoff's current law. It can also be seen that the space of node currents (node =
vertex) is isomorphic to the group PO(K) of bounding zero chains. In Kron's nota-
tion the boundary operator is expressed by the equation I'- A J, wVhere J and I'
are column vectors representing vectors in C'(K) and PO(K) with respect to bases
chosen for these spaces. We shall use the notation more customary in topology,
I' = aJ, a being the boundary operator. In this context the boundary operator may
be interpreted as an alternative expression of Kirchhoff's current law, equivalent
to the above statement of the same law. We may combine the mappings C and
c to form the following "reduced" homology sequence of the pair (K, KO), KO being
the zero skeleton of K:

C 0

0 -O H'(K) -> C'(K) -- PO(K) -- 0.

The result 6C = 0 (or A ,C = 0) is a consequence of the exactness of this sequence
and is referred to by Kron as "the orthogonality condition." Of course this result
can also be proved directly very easily.
The dual set of relations involved in considering the spaces of voltages and poten-

tials will next be identified with the corresponding "reduced" cohomology sequence.
We start at the opposite end of the sequence. First we identify the space of node
potentials with the group Co(K) of zero cochains of K. The space of potential
differences (node-pair potentials) coincides with the subgroup Po(K) of Co(K), dual
to P°(K), isomorphic to Co(K) modulo the subgroup of O-cocycles. Po(K) is selected
as the image of P°(K) under the following isomorphism: Let CO = Eauio- be an
oriented 0-chain of K, the o-,0 being oriented 0-cells of K, the summation running over
the set of all 0-cells of K, and the ai being complex numbers. Let (p(C0) be the
0-cochain f such that f( o) = aj. The transformation .p is an isomorphism of C°(K)
on Co(K). Let Po(K) be the image of P°(K) under so. Also, if { bk} is a basis for
P°(K), we shall call the set { so(bk) } of images the "same" basis for Po(K). Now
the space of branch voltages ("coil voltages" in Kron's terminology) may be identi-
fied with the group of 1-cochains of K, C1(K). The coboundary operator E = 6E'
(or E = AE', in Kron's notation), where E, E' represent elements of C1(K), Po(K),
can be considered as a statement of Kirchhoff's voltage law. Finally, the space
of mesh emfs coincides with the first cohomology group H1(K). Again, if we pick
fixed bases for H'(K) and C'(K) and write a matrix equation for the natural homo-
morphism C and then use the "same" basis to express the dual homomorphism of
C1(K) onto H1(K), then the mapping takes the form used by Kron, CV = e. This
mapping is another equivalent statement of Kirchhoff's voltage law. These two
mappings yield for us the following reduced cohomology sequence:

Ct b

0 -H(K) <- C1(K) <- Po(K) <- 0.

By exactness, Ct3 = 0 (or CA = 0); this condition is termed by Kroll "the ortho-
gonality of mesh emfs and of node-pair potentials."
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The Twisted Isomorphism.-When steady-state conditions prevail, the differ-
ential equations describing the various branch currents and branch voltages in the
network may be reduced to a matrix equation V = LJ, a single equation for the
entire network, where J is a column vector representing a 1-chain with respect to a
basis chosen for C1(K) and V is a column vector representing a 1-cochain with re-
spect to the "same" basis for C1(K). Finally, L, called the "impedance matrix,"
is determined solely by the electromagnetic properties of the various coils (their
resistances, mutual inductances, etc.); it is essential to realize that the transforma-
tion L is independent of the manner in which the branches are hooked together,
i.e., independent of the topological structure of K. In Kron's notation L is de-
noted by Z.
The electrical network problem may be stated in physical terms as follows:

Given a set of coils with given electromagnetic properties determining a trans-
formation L, hooked together in a prescribed way to determine a network K and,
given a set e' of sources of emf impressed in series with the meshes (e' is an element
of H1(K)) and a set I' of currents impressed from outside the system on the nodes
of K (I' is an element of PO(K)), the problem is to find the current flowing through
and the potential drop across each coil-these subject to Kirchhoff's laws.

The "electrical" network problem may be stated in purely mathematical terms as
follows: Given a complex K (determining the transformations C and 6) and the
matrix L, given e' E H1(K), If e PO(K), the problem is to find V e C1(K) and J e
C1(K) such that 11 V = LJ, 20 CV = e' and 30°J = If.
Whether or not a solution to the network problem exists depends, of course, upon

the nature of L. We shall say that a matrix L and the transformation represented
by L is power definite if L + L, is positive definite. The dissipative power 1/2(VJ
+ JJ) is positive definite if and only if L is power definite. Hence, for any phys-
ically realizable network, this condition is satisfied.
THEOREM. If L is power definite, then the network problem has one and only one

solution.
The problem may be readily visualized by means of the following "algebraic net-

work diagram":
c

0 - H1(K) - CI(K) - PO(K) 4-O

L' L Y Yf

Ct
0 HiH(K) C,C(K) Po(K) '

Here Y is the inverse of L, L' = CtLC, Y' = bY6. We will show that under the
conditions on L the mappings L' and Y' are one to one, that is, L' and Y' are non-
singular. We will then exhibit the solution. For suppose that L'i' = 0, and let i =
Ci'. Then it'L'i', which equals itLi, is zero, and so, too, is ittLi zero. Thus i,(L +
Lt)i = 0, and so, by the power-definiteness assumption on L, i must be zero. But
since, by exactness, C is an isomorphism into, i' must also be zero. Thus the kernel
of L' is zero, and, since the spaces have the same dimension, L' must be one to one.
By a similar argument, Y' is also shown to have an inverse. (By exactly the same
argument one may show that L' and Y' have inverses if L-L, is assumed to be
definite.)
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One may easily verify that J = C(L') -e' + Y(PY') -I' and V = LJ will con-
stitute a solution. Next we consider the question of uniqueness.

Suppose, then, that V, J and V*, J* are solutions to the given problem. Let
V# = V - V* and J# = J - J*. Then 6J# = 0, and so, by the exactness of the
homology sequence, there is an i# in H'(K) such that J# = Ci#. But V# = LJ#,
and, since CV# = 0, we have CLCi# = 0. By the above proof, i# and hence J#
must be zero, so that J = J* and V = V*.

Of course, to solve the network problem, to obtain the general solution, it is not
necessary to invert both L' and Y'. To solve, for example, by means of inverting
L' only, we proceed as follows: Let C1(K) be written as the direct sum of the
image M'(K) of H'(K) under C (Ml(K) is the group of cycles) plus another group
P1(K) (cf. companion paper,6 Sec. II). Then J, an element of Cl(K), can be
written as J = i + I, i c Ml(K), I e P'(K). Thus I is chosen such that 31 = I'
and may be considered as known. Then V = L(i + I). Now e' = CV = CL(i +
I). But i may be written as the image of an element of H'(K), i = Ci', i' e H1(K).
Thus CLCi' = e' - CLI, so that i' = (L')-I(e' - CLI). Thus J is determined,
J = Ci' + I, and V = U, so that the solution is obtained by inverting L' only.
Similarly, one may obtain the solution by inverting Y'. We also have the follow-
ing consequence of the above theorem.
COROLLARY. If a network problem is physically realizable, then there exists one
and only one solution.
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